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Abstract 
 
 Resistance to oxidation and blanching is a key issue for advanced copper alloys under 
development for NASA�s next-generation of reusable launch vehicles. Candidate alloys, 
including dispersion-strengthened Cu-Cr-Nb, solution-strengthened Cu-Ag-Zr, and ODS  
Cu-Al2O3, are being evaluated for oxidation resistance by static TGA exposures in low-p(O2) and 
cyclic oxidation in air, and by cyclic oxidation-reduction exposures (using air for oxidation and 
CO/CO2 or H2/Ar for reduction) to simulate expected service environments. The test protocol and 
results are presented.  
 
 

Introduction 
 
 Due to their high thermal conductivity, copper alloys make excellent liners for the hot 
sections of high-heat-flux engines, such as combustion chambers of rocket engines for launching 
space payloads. However, in that aggressive service environment Cu alloys are prone to 
degradation by oxidation-related phenomena. In a combustor there are always issues of static and 
cyclic oxidation; in a hydrogen-fueled (�LH2-LOX�) rocket engine there is the additional issue of 
blanching, which causes the most serious oxidation-related damage to the liners [1�4]. Blanching 
is caused by spatial and temporal variations in oxidant-to-fuel (O/F) ratio, which change the local 
ambient from oxidizing to reducing and back [3]. Oxide film formed in the fuel-lean cycle is 
reduced and removed in the fuel-rich cycle, thus exposing the metal to further attack. Therefore, 
blanching is somewhat analogous to cyclic oxidation, except that the duration of an oxidation-
reduction cycle may be in microseconds, rather than the minutes or hours that characterize cyclic 
oxidation. The �blanched� (i.e., bleached) spots indicate accelerated degradation, which has 
serious consequences for the impairment of cooling systems beneath the liner. Thus, evaluation of 
copper alloys for oxidative degradation involves tests for static oxidation, cyclic oxidation, and 
oxidation-reduction resistance. 
 
 Advanced copper alloys of interest to aerospace engine makers (as liners for thrust cell 
combustion chambers and nozzle ramps) are under study at NASA and in industry. They include: 
Cu-8Cr-4Nb, developed by the NASA Glenn Research Center in conjunction with Case Western 
Reserve University (designated �GRCop-84�); Cu-3Ag-0.1Zr (�NARloy-Z�, which is the current 
Space Shuttle Main Engine liner material); and Cu-0.1Zr (�Amzirc�). Cu-8Cr-4Nb is a 
dispersion-strengthened alloy, comprised of a Cu matrix with a 14 vol% dispersion of insoluble 
Cr2Nb precipitates [5]; the other two are solution-strengthened alloys. All are of interest to thrust-
cell designers because of their very good thermal and mechanical properties, especially at 
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elevated temperatures.  These alloys, along with Cu-Al2O3 (�Glidcop�, an ODS alloy) have been 
evaluated for resistance to oxidative degradation, as part of NASA�s program for next-generation 
launch technology (NGLT). The ODS alloy has a nano-scale dispersion of Al2O3 in Cu; there are 
three versions, with 15, 25, and 60 wt% Al (0.3, 0.5, and 1.1 wt% Al2O3, respectively), 
designated Glidcop �AL-15,� �AL-25,� and �AL-60,� respectively. The evaluation performed in 
this study included static oxidation by TGA in various oxygen partial pressures dictated by the 
thermodynamics of a LOX/LH2 engine, cyclic oxidation in air, and oxidation-reduction 
experiments conducted by in-situ switching between oxidant and reductant gases for various 
programmed durations.  
 
 

Experimental Details 
 
 The materials were powder metallurgy (PM) alloys, extruded and rolled to develop optimum 
mechanical properties. Samples for oxidation testing were cut into rectangular or circular coupons 
1 mm thick, with 19 mm as their largest dimensions, and polished to 1000-grit finish; those for 
oxidation-reduction were cut into mini-disks 5 to 7 mm in diameter and polished wafer-thin to a 
mirror finish.  
 
 Static TGA oxidation was conducted in oxygen diluted with argon to desired O2 
concentrations ranging from 0.033 vol% to 100% O2, at temperatures of 550 to 850 °C; oxidation 
durations were 10 to 50 hr. Cyclic oxidation was done in air at 500 to 700 °C, each run consisting 
of twenty half-hour cycles (for total exposure times of 10 hr) with the samples weighed on every 
cycle. For blanching simulation the mini-disks were cycled at 800 °C between air and reducing 
gas. This reductant was initially 90% CO/10% CO2, later 5% H2 in Ar (5% being the maximum 
hydrogen concentration permitted by safety considerations). All gases were of ultra-high-purity 
grade. The oxidation-reduction schedule was:  0.5 hr to heat to 800 °C in H2/Ar, ~3 hr of 
oxidation-reduction cycling, and 1 hr of cooling to room temperature in H2/Ar.  
 
 One oxidation-reduction cycle consisted of exposure for tO minutes in air followed by tR 
minutes in H2/Ar. Switching between the two environments was done in-situ. The values of tO and 
tR were optimized to satisfy two criteria: (1) that a detectable quantity of oxide be observed to 
grow in the oxidation half-cycle and then to be fully consumed in the reduction half-cycle thereby 
exposing the substrate for further reaction; and (2) that a large number of cycles be 
accommodated in a 5 hr experiment, for maximum cumulative effect. In practice this amounted to 
fixing tO at a low value and increasing tR until both criteria were satisfied. The values of tO and tR, 
respectively, that gave satisfactory results are 0.5 and 5 minutes for reduction in CO/CO2; for 
reduction in 5%H2/Ar they were 0.1 and 5 minutes. This need to amplify the oxidation and 
reduction effects also necessitated doing the test at the rather high temperature of ~800 °C, rather 
than the wall temperature of ~600 to 700 °C expected in service.   
 
 

Results and Discussion 
 

Static Oxidation 
 
 TGA results for the Cu alloys are compared in Fig. 1 for a representative set of conditions. 
Note that: (1) 700 °C is in the upper reaches of expected service temperatures, and oxidation rates 
and mechanisms were found to be independent of p(O2) in the range of 0.25 to 100% O2 [6].  
(2) Cu and the two solution-strengthened alloys are in one class, with very similar oxidation rates; 
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and the dispersion-strengthened alloys (Cu-8Cr-4Nb and Cu-Al2O3) in another class with much 
lower oxidation rates. (3) The kinetics are parabolic for all the alloys (and stayed so for 
temperatures and in all ambients with 0.25% and higher O2 concentrations).  
 
 The uniformly parabolic kinetics are consistent with the fact that the major event occurring in 
each case is oxidation of Cu to its usual duplex oxide (Cu2O/CuO), which is controlled by 
diffusion of Cu through the oxide. In Cu and the solution-strengthened alloys, this conversion of 
Cu to Cu2O/CuO remains the sole oxidation process involved. In the dispersion-strengthened 
alloys, on the other hand, the overall rate is controlled by processes no doubt involving the 
dispersoids. For Cu-8Cr-4Nb that process is a modified reservoir effect resulting from oxidation 
of Cr2Nb [6]; the sub-layer of Cr-Nb oxides is indicated in Fig. 2, and beneath it is a characteristic 
precipitate-free zone in the substrate.  For Cu-Al2O3 it appears that the slow oxidation kinetics 
must relate to the presence of nano-dispersed Al2O3, but the exact details remain as yet 
unidentified. Fuller accounts of these observations appear elsewhere [6]. 
 
 

Temperature Cycling 
 
 Figure 3(a) shows cyclic-oxidation weight changes for several Cu alloys. The disparity 
among the three Cu-Al2O3 compositions (ODS-15, 25, and 60), which differ in only their Al2O3 
contents, is unexplained. Apart from that disparity, and the insignificant weight change of pure  
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Fig. 1. Oxidation kinetics in 2.2% O2 at 700 °C, illustrating parabolic 
behavior for Cu and the alloys at all temperatures investigated and in  
0.25 vol% to 100% O2 
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Fig. 3a. Cyclic-oxidation weight changes in air at 600 °C. 
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Fig. 2. SEM cross-section of Cu-8Cr-4Nb oxidized in air at 700 °C, showing 
oxide/substrate boundary: FOL (friable oxide layer) is inner layer of Cu2O; 
DOL (dense oxide layer) is a layer of Cr-Nb oxides; PFZ is a precipitate-free 
zone induced in the matrix by oxidation. 
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 These 600 °C cyclic-oxidation results are representative of the results obtained at the other 
temperatures: the dispersion-strengthened alloys resisted cyclic oxidation (i.e., exhibited the least 
weight changes) better than the solution-strengthened alloys, and good performance in this regard 
correlated with retention of oxide scale through the cycles. 
 
 

Oxidation-Reduction Cycling 
 
 Figure 4 shows the weight-change responses of Cu-8Cr-4Nb and Cu-3Ag-0.5Zr (which is 
known to undergo blanching) during oxidation-reduction. The oxidation was performed in air  
and the reduction in CO/CO2 or H2/Ar as indicated in the figure. The responses are qualitatively 
the same for the two different reductants. Cu-3Ag-0.5Zr, which is prone to blanching, is 
characterized by a flat weight-gain response (after the ~20 minutes it took to attain exposure 

Fig. 3(b).Cu alloys after 10 hr of cyclic oxidation in air at 600 °C. Cu-8Cr-
4Nb, which had the lowest weight change in Fig. 3(a), also shows the fullest 
oxide cover in Fig. 3(b). 
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temperature). Thus, for this material, weight gained during the oxidation stage of a cycle was 
completely lost during the reducing stage. In contrast, Cu-8Cr-4Nb is characterized by continuous 
weight gain, reaching saturation after ~2 hr. 
 
 The appearance of the samples after oxidation-reduction also correlated with the above 
weight-gain profiles: Cu-3Ag-0.5Zr coupons emerged with a clean, metallic luster while  
Cu-8Cr-4Nb coupons came out dark.  
 
 Shown in Fig. 5 are SEM images of the sample surfaces: Cu-3Ag-0.5Zr was deeply pitted and 
scarred, while Cu-8Cr-4Nb was fully covered in a mat identified by EDS as oxides of Cr and Nb, 
as detailed elsewhere [7]. It seems these Cr-Nb-O phases resist reduction and hence protect the 
substrate from further degradation. In other words, to the extent that oxidation-reduction is a key 
factor in blanching attack, this alloy should resist blanching at the temperatures where Cr-Nb 
oxides grow [7]. 
 
 

Summary and Conclusion 
 
 In an effort to assess, by laboratory means, the blanching resistance of an advanced Cu alloy, 
Cu-8Cr-4Nb, this material was subjected to 40 to 50 in-situ cycles of oxidation-reduction. The 
same treatment was given to Cu-3Ag-0.5Zr, an alloy that is known to undergo blanching 
degradation in service as a rocket engine liner. Cu-3Ag-0.5Zr, which usually forms a Cu2O/CuO 
scale, registered zero net weight gain during the exposure; the sample emerged without oxide 
cover, its surface deeply sculpted in a manner consistent with blanching features usually observed 
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Fig. 4. Weight-change profiles for Cu-3Ag-0.5Zr and Cu-8Cr-4Nb during 
oxidation-reduction exposures at 800 °C. In each case air was the oxidant and 
CO or H2 the active reductant, as indicated. 
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in service. In contrast, Cu-8Cr-4Nb (which usually forms an additional subscale of Cr-Nb oxides) 
registered continuous weight gain, and the sample emerged with a protective cover of Cr-Nb 
oxides which are resistant to reduction. 
 
 Cu-8Cr-4Nb is very likely to resist blanching degradation in service since it has been shown 
in this study to resist oxidation-reduction, and also shown (elsewhere) to resist static and cyclic 
oxidation much better than Cu-3Ag-0.5Cr).  
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Fig. 5. SEM images of (a) Cu-3Ag-0.5Zr and (b) Cu-8Cr-4Nb surfaces 
after oxidation-reduction cycling: The former is bare, with deep fissures 
(shown at higher magnification) indicative of extensive attack, while 
the later is covered by protective oxide.  
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